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ABSTRACT

A simple equation is derived to describe curvilinear flow, and this is then ap-
plied to vavrious practical problems. In the case of annuiar jet fiow, previous
theories are shown to be approximate solutions to the general equation; the
more exact solution of this repert is shown to give better agreement with ex-
periment.

The new theory is also applied to the flow of air in a curved duct, the flow into
an intake, the jet flap, ard Coanda flow. Comparison with experiment again
gives good agreement,

Because curvilinear flow implies diffusion, the theory of diffusion is studied
in some ‘etail, and a general theory is developed for the total head lost in a
rapid dii..:sion. When applied to the diffusion loss mexsurod in the nozzi> of
an annu ar jet, and the analogous losses in a curved duct, the theory gives ex-
cellent ugreement with experiment.

The various investigations oover fairly wide areas in subsonic aerodynamics.
Thus, i: has proved impossible to work out the applications of the theory com-
pletely for all the cases considered. The same is true of the experimental work
reported, and further work in both areas ia suggested,
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SYMBOLS

The prefix /A denotes an increment of the appropriate quantity. When it
prefixes a nressure, it denotes that the pressure is '""gauge'; that is, the
pressure is measured relative to ambient static pressure pq.

E.g., 8P« P- fa

y.| ’ - P - f‘
In general we employ the conventional X and y axes wherever possible.
In different parts of the report the same symbol is sometimes used to denote
different quantities. This is unavoidable because of the large number of dif-

ferent topics discussed, but the precise meaning is always made clear in the
text when this duplication occurs.

Where special symbols are defined and used in only one place in the report,
they do not appear in the following iist.

A anareca
A, cushion area
¢’ periphery or length of a jet
(p coefficient of discharge
or €p a drag coefficient
¢ skin friction coefficient on & solid boundary
¢z apparent skin friction coefficient at a fluid interface

(p  a pressure coefficient = 0 "A)/ “fm,‘

Cy  coefficient of local skin friction stress

=/ tpu

D diameter of a circular planform GEM
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or
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a force

total nozzle thrust

height of an anmular jet nozzle above the ground plane
a dimension specified in Figure 23

a total pressure loss

a momentum flux

(/(M" ‘7 , for example)

nozzle momentum flux

& constant

an exponent

a mass flow rate

entrained air ratio

a static pressure

a total pressure ( ’ + tfﬁ“ , for example)

& power

a cushion pressure parameter defined in Equation (142)
a dynamic pressure ( *("‘ , for example)

a radius, usually the iocal radius of a curved jet
irner radius of a jet

outer radius of a jet
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or

or

=]
Lo ]

st

R

2 Paa® x A R T & {2
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nozzle width or jet thickness

thickness of a jet at ambient static pressure
velocity parallel to the X' axis
free-stream velocity

a mean velocity

velocity parallel to the ; axis

a resultant velocity

width of & rectangular duct

a height parameter = f ( I 4+ Sinm 6)
distarce along the & axis

a height parameter = f{,¢ Ston ‘)/(,__ i"-”)
distance alung the ’ axis

distance across a jet

an elemental mass

a flow curvature parameter
+ sdo @
! ¢+ %0
an efficiency

angle at which a jet is inclined inward from the vertical
a velocity profile shape factor defined in Equation (48)

coefficient of fluid viscosity

Ce



or

R}

mass density of the fluid

local skin friciion stress

an augmentation ratio (total thrust/primary thrust)

a velocity profile shape factor defined in Equation (53)

a parameter defined in Equation (258)



Chapter One

SUMMARY AND DISCUSSION

Although it is more usual to have a "Discussion of Results" near the end of a
research report, the diffuse nature of the present progra—: seems to render a
different approacn more appropriate. Accordingly we shall review the program
in a fairly general way in this chapter, in order to place it in a proper perspec-
tive. Subsequent chapters will deal with the details of the various investigations.

THE FUNDAMENTAL PROBLEM

“Jnderlying the whole of this program is the central phenomenon of a subsonic
fluid flow field which is not rectilinear; that is to say, one which is constrained
in some way to flow along a curved path. Some examples of practical problems
which involve such flows are sketched in Figure 1,and it is evident that our study
is not lacking in practical utility.

Until quite recently, practical aerodynamic theory was almost entirely based
on the assumption that air was inviscid. Viscous effects were considered only
to arise in the boundary layer, cs first suggested by Prandtl, and simple meth-
ods were evolved for applying viscous effect 'corrections" to the various in-
viscid flow theories. The reason for this was that the viscous shear stress in
a fluid is proportional to the local velocity gradient; that is,

stress = g; (2)

sothat, if Ja/3s is small, the viscous foroes are negligible. Prandtl
showed that the velocity gradient wag negligibly small in practical flow fields,
except for a very thin layer of fluid close to a solid boundary. Thus, by re-
garding this boundary layer as part of the body, wo can use inviscid flow theory
to determine the main flow field, The details of the boundary flow can then be
treated as a separate problem; most usually, in fact, we do not need to study
the boundary layer, but rather should represent its effect by an empirically de-
termined "skin-friction" loss coefficient.

The foregoing might appear to relegate the boundary layer to a position of
negligible importance in engineering serodynamics. This is by no means so,
of course, since it is responsible for most of the drag of streamline bodies and
also is the controlling factor in separation of the flow ("stall") from the surface
of a body. Until quite recently, however, and excluding aome special cases,
these problems have Yeen dealt with on an entirely empirical basis.

praeer
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(a) Flow into a horizontal (b) Annular jet flow.
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’ t{ (e) Flow in & c:rved duct.
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(d) Coanda jet flows.
Figure 1 Curved Flow Fields Considered in This Report.
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A jet is a stream of air which has a velocity markedly different from the main
body of air being considered in a problem. A conventional jet is moving faster
than the surrounding fluid, but it is no different, in principle, from the "negative
jet flow" into an intake, Figure 1(a), or the wake behind a body. In all cases there
exists a substantial velocity discontinuity at the surface of the jet so that, from
Equation (1), viscous forces become important.

Jets did not play a significant role in aerodynamics until the advent of the gas
turbine for propulsion; even then, it was the propulsive force obtained, rather
than the finer details of the jet flow structure, that received most attention. The
propulsive force depended on the fiow condition at the engine exit nozzle, not on
what happened downstream.

The advent of the jet flap, annular jet, and other similar concepts markedly
changed this picture. For the first time, a jet was being used to influence the
main flow field, and the characteristics of the jet after it left the nozzle were
found to be the controlling parameters.

Early investigators tried to tackle these new problems with the well tried in-
viscid fiow theory techniques, not only with limited success, but sometimes
with nonsensical results. The famous "thrust hypothesis' for the jet flap is
a good example of this.

1 % -
w T = i .
I S > L

Figure 2. The "Thrust Hypothesis' for a Jet
Flap in Inviscid Flow,



Davidson's original hypothesis! is illustrated in Figure 2. If the control bond-
aries are drawn far enough away from a jet-flapped wing,it can be shown that
the horizontal momentum flux out of the box is greater than the flow in, by the
amount Jge . Thus, although Js is a vertical vector at the wing, we must ex-
pect a horizontal (propulsive) force Jee to appear on the wing.

2
In inviscid flow, both Davidéon and Stratford assumed Jos = Jg , so that
all the nozzle jet reaction should appear as a thrust force on the wing.

At the risk of being a little pedantic, perhaps, we should note that the total
nozzle force ( F, ) is greater than X, . The correct relationship for in-

viscid flow is
L . A=

Fue ' — $OMs/ap, @
where ‘ﬁc = mean static pressure at the nozzle
= flrefar;)
AF, = jet total head at the nozzle.

Equation (2) ie always somewhat less tham umity, so that the "thwust hypothesis"
is only approximately correct, even in inviscid flow.

In & real fluid, free-stream air mixes with the jet. Payne° has shown that,

“when such mixing takes place at a pressure which is greater than ambient, the
final momentum flux is always reduced. In other words, the loss cf free-strea
air momentum is greater than that gained by the jet. Calculations show that thc
reduction in Je caused by this effect adequately explains the measured "thru
loss" of a jet flap at high deflection angles, even though there are some small a
ditional losses (swoh as nozzle diffusion loss) which will be identified in subseq
portions of this report.

We conclude, therefore, that jet flows cannot, in general, be explained by in-
viscid flow theory. Thus,a large part of the present program has been devoted
to developing methods which allow viscous effects to be calculated.

Curved jet flows present the same general problems as rectilinear jets but
with the added complication of centrifugal acceleration effects, as indicated
in Figure 3.
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Figure 3. Centrifugal Force on a Curved Jet Element.

Since the centrifugal forces must be balanced by a static pressure gradient
across the jet, even the inviscid flow field is fairly complicated in this case.
Although many attempts have beer made, we know of no completely satisfac-
tory solution to this problem, so that development of an inviscid curved jet
flow theory was the first task undertaken during this program. This was
then used as the basis for corrections due to viscosity. Largely because

of the terms of the initial work statement, this theory has been most fully
developed and experimentally confirmed for the annular jet case. This has
no particular significance, of course, and the general theory, with appropri-
ate end-conditions, is equally applicable to any of the problems sketched in
Figure 1. It isbelieved to e 2 powerful tool for the solution of a very large
class of subsonic flow problems, and it was naturally impossible to develop
its full potential in the present program,

DIFFUSION LOSSES

A viscous fluid can be accelerated without fi.curring important energy losses,
so long as compressibility effects are not encountered. The process of slow-
ing down a fluid -~ diffusion -- always involves large energy losses, however.
Thus,diffusion, and its associated phenomena of energy loss and flow separa-
tion, constitutes perhaps the most important problem in subsonic fluid dy-
namics. Paradoxically, it is a problem which has received relatively little
attention, so that today the position is the same as it was decades ago, at
least so far as minimizing diffusion losses are concerned.
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Figure 3. Centrifugal Force -n a Curved Jet Element.

Since the centrifugal forces must be balanced by a static pressure gradient
across the jet, even the inviscid flow field is fairly complicated in this case.
Although many attempts have beer made, we know of no completely satisfac-
tory solution to this problem, so that development of an inviscid curved jet
flow theory was the first task undertaken during this program. This was
then used as the basis for corrections due to viscosi‘ty. Largely because

of the terms of the initial work statement, this theory has been most fully
developed and experimentally confirmed for the annular jet case. This has
no particular significance, of course, and the general theory, with appropri-
ate end-conditions, is equally applicable to any of the problems sketched in
Figure 1. It isbelieved to be » powerful tool for the solution of a very large
class of subsonic flow problems, and it was naturally impossible to develop
its full potential in the present program.

DIFFUSION LOSSES

A viscous fluid can be accelerated without Li.curring important energy losses,
so long as compressibility effects are not encountered. The process of slow-
ing down a fluid -- diffusion -~ always involves large energy losses, however.
Thus ,diffusion, and its associated phenomens of energy loss and flow separa-
tion, constitutes perhaps the most important problem in subsonic fluid dy-
namics. Paradoxically, it is a problem which has received relatively little
attention, so that today the position is the same as it was decades ago, at
least so far as minimizing diffusion losses are concerned.



Needless to say, the static pressure gradient generated in a curved jet flow
means that diffusion must occur at some point. Hence,we were very concerned
to find some way of analytically predicting the associated losses.

Even before the present program began, we noted two peculiarities. The first
of these was the empirica! observation (References 5, 6, and 7) that diffusion is
possible only down to a velocity of about half the initial value, unless some
means of renewing the boundary layer is used (multistage diffusion, boun-
dary layer suction, etc.) The second point of interest was the fact that sim-
ple "Borda-Carnot' momentum theory for a rapid diffusion in a pipe gave very
good agreement with measured losses.

Figure 4 Borda-Carnot Diffusion.

The Borda~Carnot theory tended to be an isolated theoretical oddity, out of
the main stream of fluid-dynamic theory, but we felt that it might offer im-
portant clues to moxe general cases.

In developing this theory in a more general form,we found that it tied in with
the first (empirically observed) peouliarity in a very surprising way. If the
velocity profiles befors and after diffusion were mathematically similar, then
the theory showed that the mean velocity ratio could not be less than 0.5. If
the velooity profiles were dissimilar, then the maximum theoretically attain-
able diffusion varied in the same manner as indicated by boundary layer theory.

Obviously, it would have been desirable to follow up this clue, since we may
well be on the threshold of a ""unified theory" of diffusion. Unfortunately,the
level of effort required was not possible under the present contract. However,
it was possible to feel some confidence in the generalized (two-dimensional)
diffusion theory produced during this part of the investigation, even though



its derivation, and certainly its application to some of the curved flow prob-
lems, could not be described as rigorous.

An interesting example of the application of the diffusion theory is the curved
duct problem of Figure 1(e). The curved flow theory shows that, at the start
of the bend, there is a sudden increase in static pressure on the outside wall
and a reduction on the inner wall. At the end of the bend the situation is re-
versed, so that two diffusions occur: one on the outside wall at the beginning
of the turn, and cae on the inside wall at the end of the turn. By using the in-
viscid theory to calculate these pressure distributions, and then applying the
new diffusion theory, we can calculate the total head lost in the turn. Not
surprisingly, as shown in Chapter Nine, we find that, for two-dimensional flow,

Total head lost =
initial dynamic head

- duct width )

© * radius of curvature

Although no two-dimensional flow test data is available for this case, we find
that extrapolation of the available three-dimensional data gives excellent agree-
ment with the calculated theoretical loss. This ocbviously opens the way to
significant improvemenis in the design of low-loss duct bends.

We have also applied this diffusion theory to the caloulation of the total head
lost in an annular jet nozsle. Once again, the agreement with experiment is
good, both 80 far as total loss is concerned and for the loss distribution
across the duct.

When applied to diffusion after a Coanda flow, the theory gives rather larger
losses than for an equivalent pipe bead, but unfortunately, we know of no ex-
perimental data which can be used for comparative purposes in this case.

In summary, the new diffusion theory developed during the course of this
program is apparently oapable of dealing with relatively sudden pressure
rises in two-dimensional flow aad cea (presumably) be extended to three-
dimensional flow probloms. A very limited comparison with experiment
indicates good agreement, but substantially more work will have to be done
before we can feel confident of it, becsuse its basic derivation is not mathe-
matically rigorous, at least for curvilinear applications.

In the following sections of this chapter we shall briefly summarize the basic
work done on viscous mixing, curvilinear flow, and diffusion loss in the prac-
tical applications considered in this report.



ANNULAR JET THEORY

As for all of the problems considered, the basic differential equation for
curvilinear flow applies to the annular jet problem. This equation is

d, £,y o0 2
ZA*',’ 4‘6 (3)

is the local total pressure

Here Q, is the local static pressure
3‘ is the local radius of curvature

In the following paragraphs we shall describe the solutions to this equation
obtained by the investigators who pioneered annular jet theory. With the
benefit of hindsight, we shall derive their solutions, from Equation (3), in
one or two lines of analysis. This in no way detracts from their achieve-
ments, of course, because it is always easier to follow than to find a way.
Also, it is doubtful that they realized that their problem was really the
solution of Equation (3); rather, each appeared to formulate the physical
description of the problem in a less fundamental way. Only in the present
investigation has it been realized that Equation (3) is the starting point
for all the formulations.

We shall also ignore, for the time being, the potential flow solution of
Strandl4, since this is based upon an entirely different analysis. Strand's
work was by far the most sophistioated attack on the annular jet problem,
of course, and best agrees with the theory developed in this report over
most of the operating height range. It suffers from a serious flaw, how-
ever, in that it deviutes from known potential flow solutions as the nozzle
approaches the ground plane, a defect which the present theory avoids. In
the limit £/% = o , for example, the discharge coefficient approaches
0.5, instead of the known solution of approximately 0.62 for a slit.

The reason for this is not lnown, Strand himself, in verbal discussions
with the senior author of this report, could only suggest a possible reason;
thus an attempt to explain this anomaly is hardly likely to be fruitful,




In discussing inviscid flow solutions to the annular jet problem we shall not
compare results with experiment. Many investigators have shown that real
(visceus) annular jet flows gencrate relatively strong secondary flows, so

thal there is ohviously a significanc loss in cushion pressure, relative to the
ideal inviscid fluid case. Also, as shown in the present report, there is a
significant nozzle diffusion loss. Thus any appeal to experiment, as a means
of judging an inviscid flow theory, is obviously likely to be unsatisfactory. In-
deed, we might almost go se far as to say that an inviscid theory which agreed
with experiment must be wrong, since the theory should not contain the viscous
mixing and diffusion losses.*

‘CHAPLIN'S SOLUTION (THIN-JET THEORY)

9
‘The first mpartant annular jet theory was Chaplin's™, of course, where this
Equation was expressed in finite, rather than infinitesimal, terms. By taking
# as u constant (4 = R say), and assuming that the static pressure varies

lincarly across the jet, that is,

db_ b Ay A - O @

e dg  ds d} T

then Chaplin obtained, in effect,
Ap 27,7, _ 2
s 2(%)4p = = 48,

in common with later investigators, he also assumed that the jet total pressure
2 was constant ( A@ , 8ay) across the jet. :

&

«

Thus at the inner streamline (% = ),
Ap. 2/R  _  2(tR)
2P f+3 I +20t1) )

ile then eniculated the radius of jet curvature ( R ),using the thin jet qocmetry
=hwn in Figure 5.

27

‘since writing this report we have seen an excellent paper by Eames®’ in which

*Lis point is emphasized.
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Figure 5 Chaplin's Curved Jet Geometry.
From this geometry, the clearance height (4 ) is evidently given by
‘ ] l - k Sin &

£

. = —
.

(+%mb

oY% - f(u-sfuo) = X (say).

0]

Thus Chaplin's relstionship for the cushion pressure (4. ) becomes

2
f‘g BNEYL @

It is found that this gives fair agreement with experiment for small values of
x (large hover heights) but becomes progressively less accurate as the
height is reduced. When the vehicle is touching the ground (£=0), Equation
() gives A /AP, =12.0, whereas we know that the correct answer should
be 1.0; that is, because no air is flowing, the total and static pressures are

equal.

10



Cheplin recognized these limitations, of course, and specifically limited his
theory to "thin jets" in which £ >> € .,

As mentioned above, Chaplin assumed that the jet radius of curvature was
constant. To be more specific, he assumed it was constant along the jet
because it divided two constant pressure areas: the "cushion'' and the am-
bient air outside. He was g&ble to show that the assumption of constant
pressure boundaries of necessity required a constant curvature.

He also assumed that the curvature was constant across the jet. This is
(mathematically) acceptable for thin jets, but gives rise to a rather mean-
ingless physical picture, since the jet vanishes at the ground plane. This
is illustrated in Figure 6, a thick jet being shown for clarity.

Radius of Curvature Jet.

Cross1? and Stanton-Jonest! (the precedence cannot be determined from
the literature) extended Chaplin's theory to the case of "thick jets". Their
only change was to reject the assumption of constant static pressure gradi-
ent across the jet, Equation (4). Since they retained Chaplin's constant
radius assumption, their version of Equation (3) was

f +7§%- 2 af, .

11
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Or, since /) 2 As

Aﬁ, - 2 AP
}, 9)

This is a simple first-order differeutial equation with constant coefficients,
and the solution is well known, That is,

ap = < ’z}[R["’ AF, dy, +K]. (10

When we insert the end conditiondP;, =0at J =0 (jet static pressure the
same as ambient at the outermost streamline) this equation simplifies to

~23/0
9'9 o me ar
ar;
and the cushion pressure, which corresponds to the innermost streamline
( }"t' ), is then
- SO
=» - ‘ .
AP (12)

This equation tends to unity as the ground clearance height (£ ) tends to zero,
thus avoiding the most important limitation of Chaplin's solution. When com-
pared with experimental results it gives quite good agreement. As a result,
the general theory which follows from Equation (11) is widely used in the in-
dustry. Yet if this agreement is fortuituus, acceptance of exponential theory
could prevent the obtaining of a better physical picture of annular jet flow,
and hence prevent the discovery of more efficient ways of generating an annular
Jet.

PINNES' SOLUTION (FREE-VORTEX FLOW)

Exponential theory is based upon an impossible physical picture, as we have
seen, since the jet cannot possibly vanish as it strikes the ground. Pinnes!?
chose to circumvent this by assuming that the jet thickness remained constant,
as shown in Figure 7.

12
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Figure 7 Pinnes' "Free Vortex' Assumption

for Annular Jet Flow.

We can immediately see that this formulation must be to a "thin-jet" theory,
since if £ < € , the outer radius 75 will have to be negative, a physical
impossibility.

While retaining the assumption that any jet streamline will have constant
curvature along its length, the Pinnes formulation assumes that (7~ )
will vary across the jet in a linear manner. That is,

o = I
’ } 13)

R=dvs + ¢

This is 2 significant improvement in rigor, relative to exponential theory.
The basic differential equation now becomes

2 2. 4P

‘ = .
2 ey “ap” as
The standard form solution then gives

g . 2[4
25 (+5)"

(15)

13



and the cushion pressure o
% (CE+)

£7? 73 3t
v (Z +1)

- Z2x - x"° (16)

In this casedfe/be = 1.0 when X =1.0, a result which is obviously in error.
due to the geometrical limitations noted above. Also, as X-» 1.0, the theo-
retical mass flow tends to zero. Thus,we have to conclude, rather paradoxi-
cally, that although the Pinnes formulation is more rigorous, it results in a
less accurate description of annular jet flow. In the sense that it pointed the
way to further developments, howevei, the Pinnes theory represented an im-
portant advance.

PAYNE'S CORRECTION FOR JET CURVATURE

All the previous theories used Chaplin's relationship (6) for jet curvature.
Payne13 pointed out that this was correct only for zero jet deflection angle,
or when the jet was of negligible thickness. The correct relationship for a
jet of finite thickness ( T ) is actually

L= Caunf

R = Cid 506) an

80 that “h = f& G+ 2.0 X (say) (18)
(1 - % ©.6)

in place of Chaplin's relaiionship given in Equation (6). In Reference :°’,
Payne showed that the available experimental data correlated hetter against
this new parameter X .

THE ANNULAR JET SOLUTION OF THIS REPORT

Although Pinnes improved the physical representation of the annular jet at
large heights, he stopped short of realizsing a perfectly general description.
As indicated in Figure 8, his geometry is approximately correct at large
ground clearances and the expounential theory (constant radius) geometry is
approximately correct for very low clearances.

14
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(a) Low Clearance.

(b) High Clearance.

Figure 8. Effect of Ground Clearance on Jet
Radius of Curvature.

At low heights the static pressure in the jet is high and the mass flow is low.
Thus, after the jet has expanded to ambient pressure along the ground plsne,
it is moving much faster,and its thickness ( € ) is much less than the nozzle
thickness (7 ). Under these conditions, #3 is only a lMttie less than R, and
exponential theory gives a good descriptiva of the flow.

At high heights, there is little difference between the cushion pressure and
ambient, so that Za-fe ¢, Under these conditions there is little change in
jet thickness and Pinnes solution gives a good description of the flow. Thus
the two limits are

R~ ¢, ay L - o %

R —wllst€) as L —= oo (15)

We naturally wondered if it would be poasible to interpolate these two limit
cases with a more general variation.
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R=4+9C

T
where ‘F (w
When 9 = 0, we have expomential theory and when % = 1.0 we have
free-vortex theory. In general, ? will be betwesn these two extreme
values.
As will be shown laser, it turss out th:t such an interpolation is pessible,
and we find
e +3a8
’ t " .
[ + S 6 (21)
Thus the local radius in she jet is now given by
T o+ ‘7’- . (22)
Equation (3) thea beocomes
- S Ap - —— 4K
©+93 2 +33) (23)

and the gemeral solution is thepefore .
"}‘ - (@ 47})-”{ l[;‘*?}) ‘5 4}2 . (24)

Note that in this equation we have retained 4/ as an arbitrary function of

( ), rather than assume it to be constant, l- previous workers have done.
e shall find that a variation in across the jet influences the cushion

pressure generated and that this be quite different from the result cb-

tained by assuming a constant total pressure equal to the mean value.

16
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For the case of uniform jet total pressure, the new theory is compared with
exponential and free-vortex theories in Figure 9. As we should expect, it

falls between these two limits, tending to the Pinnes solution above K% =4.0.
In the intermediate range,it gives a cushion pressure which is quite significantly
greater than that given by exponential theory.

Referring now to Figure 10, which shows some experimental data in compari-
son with the new theory, we may wonder whether the new theory was worth de-
veloping, since all the data points fall below it! The theory is for inviscid
flow, however, and we shall see that when we correct it to allow for the effects
of nozzle diffusion loss and viscous entrainment in the jet, good agreement with
experiment is obtained. The older theories disregarded these effects and hence
offered no rational methods of minimizing them.

MOMENTUM BALANCE OF THE ANNULAR JET

An important offshoot of the analysis presented in this report is the concept of
momentum balance.

Figure 11, Momentum Balance Geometry.

Referring to Figure 11, it wi'l be shown quite rigorously that, if & isa
constant, then
a
A * pc,

(25)

where Ja isthe momentum fluxto ambient and <& is the effective jet periphery
(jet length in the two-dimensioual case).

19



This simple relationship is of considerable value, since it is quite fundamental.
X

COANDA JET THEORY

(7

. t1¢
(a) Annular jet flow = (b) Coanda jet flow

Figure 12, Equivalence of Annular Jet and Coanda
Jet Flows.

As indicated in Figure 11, there is no difference, in principle, between the
annular jet, which is curved outward by the cushion overpressure, and the
Coanda jet flow, ‘which is curved inward by wall "suction". Equation (3) is
still applicable but the "end condition" of ambient static pressure is now trans-
ferred to the opposite side of the jet.

In the present investigation we have cousidered only the free-vortex selution
(¢ =45 43 ) although the more general case of ( ¢ =f;47},) may be more
applicable when the jot thickness is large.

One basic difference in the overall flow system is the diffusion whicn occurs
at the end of the curved flow path (X=X in Figure 12b). If the curve intersects
with a tangential straight wall, then the sudden disappearance of the centrif-
ugal forces in the flow must result in a sudden static pressure rise at the in-
tersection. This effect is amenable to the diffusion loss analysis mentioned
earlier,and we find that quite large pressure losses are to be expected when
the jet is thick. Coupled with the skin friction loss and the static pressure
gradient across the jet, this diffusion loss explains why laboratory studies of
the Coanda effect do not show any thrust augmertation effect, even though the
jet entrains ambient air at a lower-than-ambient static pressure.

20
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In Reference 3 (part of which was written under the present contract),it was
shown that thrust augmentation occurs when a jet mixes with ambient air at a
static pressure which is lower than ambient. As indicated in Figure 13, there
is an optimum static pressure for maximum augmentation; mixing at pressures
away from this optimum results in less than optimum augmentation.

= My,

AUGMENTATION

2
-
]
2

$

i
- ap, "{Zn

Figure 13.  Variation of Augmenatation Ratio § With
the Mixing Pressure Parameter A} .

Thrust augmentation is defined as

R
= X = Totalthrustofthoaygmentor .
’ Thrust of primary exhausting to ambient

The mixing pressure parameter is

4'=

In Coanda flow,the mixing pressure varies from ambient (ﬂ = 0, point A
in Figure 13) at the outside of the jet to

3] - “'m (2._4___%) :
A"/”“‘ ?,-:%)‘ (26)
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at the wall (point B in Figure 13). Thus,the mixing pressure can only be
optimum at one streamline (’. ),and the overall augmentation will be less
than optimum.,

A second factor determining augmentation is the efficiency at which the flow
is diffused back to ambient from the mixing pressureAp, . A typical variation
is sketched in Figure 14.

A

¢c 5 * N
a \
N

S

N

N

S

N

N

1o .
h

N

N

N

o N
o

Diffusion efficiency —=

Figure 14. Variation of Augmentation Ratio With
Diffusion Efficiency, Assuming Optimum
Mixing Pressure,

It is obvious that worthwhile thrust increases can be obtained only when the
diffuser efficiency is high -~ 90% or greater, say. For relatively thick jets,
the diffusion loss at the end of a Coanda curve can be quite large -- V), as
low as 0.5 -~ so that high augmentation ratios can be obtained only by keeping
the jet thin. The losses due to skin friction then become important, however.

Another reason for using thin jets when augmentation is required {is the amount
of ambient fluid entrained in the jet. The attainable augmentation ratio naturally
increases with the amount of fluid entrained and, as indicated in Figure 15, this
becomes important only below€//3 =0.1. Very high enirainment ratios re-
quire a jet thickness which is only a few percent of the radius of curvature;

and in this case, boundary layer effects start to become important,

22
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Figure 15. - Variation of Entrainment Ratio With Jet
Thickness for a Rigit-Angle Coanda Bend.
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Although nothing can be done about Coanda mixing at nonoptimum preasures,
we can avoid the efficiency loss due to diffusion, as indicated in Figure 16.

\ COANDA FLOW
) . SECTION

( / DIFFVSION
SECTION
T

Figure 16, A Coanda Profile Designed for Maximum
Thrust Augmentation.

In the present program we have tended to regard the Coanda effect as an in-
teresting test of the theoretical methods as they were developed, so that the
amount of coherently connected study of this phenomenon was rather slight.
The basic techaigues, however, would seem to satisfy all the requirements
for an exhaustive study. We believe that such 2 stucy would be very fruitful
and might lead the way to important future applications of this interesting
phenomenon.

INTAKE FLOW THEORY

The intake flow field depicted in Figure 1(a) is becoming increasingly impor-
tant in hardware applications, some examples being the XV-4A, XV-5A, and
various GEM configurations.

Since it is a curvilinear flow problem, Equation (3) again applies; and in a

subsequent chapter of this report, the appropriate end-conditions are defined,
and solutions obtrined for certain simple cases. Characteristically, the air

4



accelerates over the forward lip and then diffuses into the duct, so that
separation of the flow can occur, as indicated in Figure 17.

i

B

VA AV AN Ay 4y

Separation due to sudden
pressure rise,

\\ E,,,,,,

Figure 17. Leading Edge Separation With Intake Flow.

Even without separation, total pressure losses ocour, and once again, these
can be calculated with the diffusion theory developed during this program, al-
though lack of time has prevented us from actually doing this. Thus,the theo-
retical conocepts developed present us with the means of designing optimum
intake geometries.

The classical approach to such problems is to use the method of singularities to
calculate the inviscid flow fisld. This has drawbacks, of ocourse, because a real
fluid tends to separate in regions of high adverse pressure gradient. Moreover,
the fact that a real flew is not &t a constant energy level preciudes such an up-
proach from ever giving precise results unless the configuration under consid-
eration is one in which constant energy is a viable assumption.

In a practical intake flow problem, it is usual for some boundary to exist up-
stream of the intake opening. It will be shown that even & very thin boundary
layer can have a very marked effect on the intake flow distribution. More
importantly, the separation or flow distortion which results from high drag
areas upstrea:n of the intake can have a large influence upon the intake flow
distribution and on whether diffusion separation of the flow will occur.

25
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These effects can be studied, using the techniques developed, but once again,
lack of time has precluded such studies in the present program.

MOMENTUM DRAG
The momentum drag of an intake is usually defined as

Drag = (mass flow) x (free-stream velocity)
=M, 27

Various investigators have reported anomalies, in that the difference between
the measured profile drag (air off) of a vehicle -~ particularly a GEM -- and the
total drag is less than (A ¢, ); sometimes there is no difference at all.

The present work on intake flow indicates that Equation (27) is not correct,
since the intake is not swallowing undisturbed air in most cases. If there is a
substantial skin surface upstream of the intake, for example, the boundary
layer air has already been slowed down to a velocity less than ¢/, . If there
" is a high-drag element (such as a stalled wing leading edge, or a bluff body
shape, upstream) then all the intake air may have an initial velocity which is
substantially less than ¢4 . It is folt that this probably explains all the
observed anomalies, althomgh it has naturally proved impossible to under-
take a detailed review of them.

THE JBT FIAP,

The "thrust hypothesis" of the jet flap was earlier referred to and illustrated
in Figure 3. In an effort to obtain some first-hand experience, we built a 20%
thick elliptical asrofoil for the Payne two-dimensional tunnel, and also ran a
similar model in the smoke tunnel.

Typical smoks tunnel runs are illustrated in Figures 18 and 19. These are

quite conventional results, exocept for the indication of turbulence in the wake

of the wing. It is also very interesting to note that, below the wing, the free-
stream air enters the jet, rather than being deflected by it, as would be expected
in inviscid flow.

We then studied the forces generatod in the two-dimensional tunnel; using the

test setup indicated in Figure 20. As indicated in Figure 21, operation of the
jet flap generated more drag, rather than a thrust force!
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TOTAL PRESSURE DROP IN iNCHES OF WATER
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Figure 21, Results of Total Head Traverses 3.25 Chords
Behind the Jet Flapped Aerofoil, With the Jet
Flap On and Off.
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The main reason for this is indicated in Figure 22. Because of the relatively
low jet to free-stream velocity ratio, the jet entrainment is insufficient to
avoid flow separation around the trailing edge of the wing. Thus, the jet sheet
actually ‘acreases the dopth of the wake.

Given a relatively slow-speed wake, the jet now loses more energy by mixing
with it, and also by mixing with free-stream air in the region marked X—X in
Figure 22,

The net result was that, instead of obtaining

Lo

— Z=+l0
Jo

as Figure 2 would indicate, we measured

—— -— °lsz
T.

Presumably Je/Je would have been positive if the jet had been energetic
enough to prevant flow separation at the trailing edge. Mixing in the region
X~ x would still have occurred, however, and in Reference 3 it is shown
that even this is enough to explain the low values of thrust recovery

( Tou/J, = 0:2~ 04 ) reported by other workers.

JET ISSUING NORMAL AF W

The jet-flap measurements indicated that the physical picture was extremely
ccmplicated. In an effort to isolate some of the variables we therefore de-
signed an experiment in which a jet issued from the tunnel floor, as illustrated
in Figure 23.

From Equation (25) we should expect the balance of momentum flux and the
pressure forces to give

J:-a-/alp‘ d7 - Af.;&,

(28)
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TRAILING EDGE PROFILE
/ BEFORE MODIFICATION

Figure 22. Observed Flow Patterns, With and Without Jet

Flap Operating. (The trailing edge wus modi-
fied in an effort to avoid flow separation).
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i Ap. =e

('/AP'J?A 9.,

and since = ( 3_) r.t ,

)- 2(%; fus) (T2 /7;)

(F%) (29)
£Lq.

Figure 23. Assumed Geometry.

The parameter ( ‘z'/,& 2. ) is studied in the main body of this report
and is shown to be relatively insensitive to jet shape.

For the test conditions employed in the two-dimensional tunnel we obtained
the following:
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“4; fets .56 1.
Measured —-— 5.
Theoretical 0.94 15.
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The theoretical figures are based on the assumption of a constant radius curve,
but even in the limit case they would be reduced by only two-thirds. Obviously,
the theoretically predicted -4/@' is an order of magnitude greater than the
measured value.

A small part of this is attributable to assuming 4p, = 0. From the test data
we can see that A’. < 0 , due to viscous entrainment of the cavity air. Most
of it must be due to a reduction in Ja , however; part of which is attributable
to mixing with the cavity air and part to mixing with the free-stream air.

Although some aspects of this problem have been studied briefly in Reference
3, we have not attempted to formalize the theory completely for this problem

because of lack of time. Nevertheless, sufficient work has been done to indi-
cate that it is probably amenable to the general techniques developed during

this program.



Chapter Two
GENERAL DIFFUSION THEORY

THE FLOW OF A JET THROUGH A DISCONTINUITY IN STATIC PRESSURE

The flow of a jet through a change in static pressure is not well understood,
perhaps because it rarely occurs in practice; or rather, it was rare until

the advent of the jet flap and the annular jet. A one-dimensional solution

due to Borda and Carnot is known for the case of an abrupt duct enlargement
(the "Borda-Carnot loss' or the "Carnot impact formula') and gives very good
agreement with experimental observations. However, this analysis has not
been extended, and it is the purpose of the following sections to generalize the
theory and to extend it to two-dimensional flow.

A’. la o -_Le
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I
I
) }
J Llu . . i;l“-.—"'$
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u,——-‘ X
' |
—"——- -k

Figure 24. Geometry of Flow Through a Pressure Change.

x

SOLUTION FOR CONSERVATION OF TOTAL H
In Reference 4, Payne assumed that, in the absence of a mechanism to account
for losses, total head is conserved when a jet undergoes a change in static

pressure. Referring to Figure 24, this amounts to assuming Bernoulli's
equation for conservation of total head to apply along any streamline

Pue = emut + 2(AN- OR). (30)
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For the one-dimensional case, the momentum flux is given by

3-‘ = f;\-\,g.‘, a’ﬁ = MM'_.

Substituting into Equation (30),

(T - (Y + 2(oh-04)
. e
Te = (3'.,' + % (04 — 8F) ] X (31)

, this may also be written as

*x
[\ + 4_1‘::_::._‘3-‘-""] .
X (32)

Since m =

HiH f1A
\t

In other words, an increase in static pressure reduces the momeuum flux
and vice versa.

THE GENERAL MOMENTUM SOLUTION

Consider the controi boundary in AA and BB in Figure 24. The horizontal
pressure forces on this boundary must equal the momentum flux in the system.

e . 9 .
2y, (Bp-0h) - .[, A T -
s - I (o) - (34)
The mass flow is given by o e
N - [ 5 e dy - / Proa Ay
[} .r't



- 203 * CeyMe
gt T2, (35)
T R - N O T O (36)
J; = + (Af» - A'P'-)
— nd |
T INSRTZD e
R M:_‘ for uniform flow, (38)
AN

Thus, as indicated in Figure 25, a reduction in pressure results in an increase
in momentum flux, but the change is a liitle larger than that calculaied by assum-
ing conservation of total head. Because we use the dimension y‘ in Equation
(33) the above analysis can only apply for accelerating flow.

We may summarize the results as follows:

"When there is no means of mechanically reacting a
force in the direction of inlerest, momentum (rather
than total head) is conserved in an inviscid jet."

Jn

¥n
That is AP, + / («-'-6. = constant. 39
I~ ‘7 M o

Thus,the energy (or total head) of the flow will diminish if it is slowed down
(diffusion) and increase if it is accelerated. The principle of conservation of
energy is not violated by this, be-ause we have an essentially unbaianced system.

For the constrained flow case of ‘igure 26(a), the momentum balance is

' At L a af
2304 = 24, b~ Z,E”'”‘S - ,L"“ Y - Jedt Ay o)
. € ’3.
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(8) Flow constrained by solid (b) Unconstrained flow through a
walls static pressure change

Figure 286. Constrained and Unconstrained Flow Through
& Static Pressure Change.

As mdicatodinl"lgurez‘l.thomgraloatholochndndco!lmutlon(u)m
have any value between zoroand(g,— ) (A4,~8Q). X it is zero, we have the

case of no applied mechanical fore Equation (41) is identical with Equation
(39).

Referring to Figure 27, this implies that f(4$) follows the line (A- B-C ).
In other words, a contraction does not take place until after the pressure

change has occurred, Figure 26(b), while an expesion ocours before a pressure
increase.

The second case is certainly true of a sudden duct expansion. However, it is
not clear that such a situation can exist for a reduction of static pressure.
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(a) Underfed Jet (b) Balanced Jet
Figure 28. Two Jet Flow Conditions.

We might imagine the condition of Figure 24 to exist for an annular jet. Indeed,
most theories assume

4
‘/.‘ ,v,‘ c‘, s  constant

[ iv;ds - .o/'zh 45 - constant.

However, a closer examination of the jet flow indicates (Figure 28) 7 the local
jet curvature itself provides a mechanism for providing the force ( 4, a ,649 )
.

rather than

which we have seen to be essential to the conservation of total head.
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We shall, therefore, continue to assume that when an annular jet accelerates
to ambient static pressure, tota! head (and, therefore, power) is conserved.

BORDA-CARNOT DIFFUSION IN TWO-DIMENSIONAL FLOW

CONTROL
VOLUME

Figure 29. A Sudden Duct Expansion.

In this section we consider more formally the simple case of a sudden duct
expansion, which was treated by Borda and Carnot for one-dimensional flow.
Following the general >onsiderations introduced in the previous section, we
assume that the expansion of the flow boundary takes place before the pressure
rise, as indicated in Figures 29 and 30.

Using the control boundaries shown in Figure 29, the sum of the pressure
forces is

Ap(Ap - AP ) (42)

acting positively against the flow direction. (The static pressure at stations
(1) and (2) must be constant across the duct, because the flow is assumed to
be parallel.)
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Variables in a Sudden Diffusion.
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The momenaum flux through the control volume is

Ay 4,
/F“’:"‘Az - /P“I‘dA,'
o

[+

Equating (42) and (43),

AI
Az(dh "A’h) = /f«lsz( - ’ p-u: dA, .
° (4

For continuity of mass flow,
4' 4
/ A, dA. s g Ma .
[-] (]

The mean velocity is defined as

A

, A.
An J,
and we will define the momentum flux also in terms of &~ .

Av 5 2 “;
That is, ‘[ p«‘oﬂ\, = oo /“u‘mn.

where

43

(43)

(44)

(45)

(46)

(47)
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Thus, Equations (44) and (45) now become
A(Ap,- Bp) = AN — AL,

F Aaal = e Az.;l‘ °

We wish to determine the loss of energy occasioned by a sudden diffusion.

Power is defined by

A,
%o [(apen - £ed)un,
= A Aen v ACAN

An
where D A )ﬁnj s AL

9 ——————

[ A/-'\-~[‘ti.:""' &Au]‘ .

Thus,we are interested in the ratio

. ApAS, rRCAG Y,
R A AR + KA,

From (49) and (50", .
Ap O eRAAA) - el N (MR,

- Ap o+ f'&‘o(“/h)[x. - M(A'/‘g)] .

Substituting in (54),
;.j. R e N et R Tk T
. Ap » %02
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(50)

(51)

(52)

(53)

(54)

(53)
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A convenient nondimensionalization is

S - .
A'fn. jz:':;::; . (57)

-

Using this, Equation (56) becomes

fp s OBy, + ZA/AL[X. ")‘z%]" [' ’(A%zj]'l',,(sm
P A$, + ¥,

It is obviously convenient to assume similar velocity profiles at stations (1)
and (2), sothatak =~¥ and X, = X, . We should note that this is only
an assumption of convenience, however, and that a rapid diffusion can be ex-
pected to alter the profile. We would intuitively expect that a un :rm velocity
at station (1) wouid become parabolic at station (2), for example. However,
the similarity assumption can be expected to give at least a rough indication
of the effects of profile.

Equation (58) becomes

AY . - R
D7 Y.

« (1=-A%)[0+ MW - A4, ]. (59)
R +
It is often more convenient to write the demoninator in the form

shey = TReAA
from Equation (52). Thus,
s AT

For uniform flow,\y = A = 1.0, and

824 - O MY 85
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or Migpan = (V — MAY o

In other words, as % -» O , all the kinetic energy in the flow is lost.
k
Equation (61) is plotted in Figure 31.

Also in uniform flow

. AR U R . owA. o R
Apz M,A. .?1 ??. )

Thaus, the total head loss

-8R . &P . (I- AA) .
AP‘ w-\'l ?‘ ‘*AFl

But

'4 A*l - Mdp_ A+);

S35 - A0 o). ©
A
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Figure 31. Power Lost in a Sudden Diffusion, for
a Uniform Velocity Profile.
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VALUES OF THE SHAPE FACTORS A AND W

INCREASING
7

q|

Figure 32, A Family of Radial Velocity Distributions
in a Circular Duct.

We will consider the case of a circular duct with a velocity distribution of the
type

w = o [t - ("/ﬁr] (64)

Obviously:this family tends to a uniform distribution a8 ™.-%e0  and gives a
triangular distribution where \. =1.,0.

Nowthesrea A = 1r~r", A.,,"'n?I

, Ay
N T R S N (BN c H B PY
R
= g [ [t - CRY ] ewrelr
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.

- 2o [ [1- ORT JRI(%)

=~ -2

(65)
The momenium integral is
An 2 "‘ / 2w
4 | w2 -‘;{/[t—z(@‘*C'ﬁ) Jad
LA " VYo
= b -
G T~ B

Thus, from Equation (48)

oo ~E )
[V- &<)

Note that asm.—PeO | A - 1.0. Forwa. =1.0, )« =1.95.

The power integral is

‘/A.,[:la.A - fiﬁf-3@+ 23S -(2)" jua
V) SRS O

= "\ - J—- + —‘— T s
M‘[ el W+t ez ] ° (69)

Thus, from Egquation (53)
|- & +=b -5

—\‘) = ("2 § :‘l f A ) (69)
( I = Zﬂws
49
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Asm o0 ,\P—>» 1.0. Form. =1, =3.7.

Equations (67) and (69) are plotted in Figure 33, and the resultant power loss
parameter, from Equation (60), in Figure 34.

THE LIMITING VELOCITY CHANGE

From Equations (49) and (50),

A = P TRE

A;(M,"M) e (’Ag,u...u‘\ - fA A (19,
A 2
or AA. _‘ Ay —A = .
(f,:) K.“. ) (‘M./\z ' Q (T

Writing Co = A+,—Af.,

Yo oAl
"
% ) %[X" * {(’?92" 2‘)% ﬂ (72)

For similar profiles A, * Ne ° »,

& =4[ = (- FP],

(73
an equation which is plotted in Figure 35.
If we write Equation (71) as
Co * 2(3‘)[" ~ Me n‘.)] -
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and differentiate with respect to 41%:' , then equating to zero gives

’:" ( = /" ) —>—.
e e X3 (75)
P oo
Substituting in (74),
] A| =
C.,““ - ()‘a 2 )( )\z) . (76)

Thus we see from (75) and (76) that, so long as the initial and final velocity
profiles are similar (A, = A, ), Cp, .= A~ % ata mean velocity ratio

A fa, v B

Thus increasing the flow distortion increases the pressure rise coefficient,
although at the expense of increasing the associated energy loss.

Since X increases in value with increasing deviation from uniform flow,
however, we can expect Ag > M, , when the profiles are not similar. Thus,
distortion of the flow profile curing diffusion reduces the maximun: obtainable
pressure rise.

The corresponding .otal pressure loss for uniform flow is plotted against Cp
in Figure 36.

The critical velooity ratio of %. i is extremely interesting, because this
happens to be appropriately the limit for all diffusion processes. Ackeret's
criterion of

Co > 07 6 o%® ()

for stall has been confirmed experimentally by Schllchungs. If 7 is a diffusion
efficiency, we have from Bernoulli, A
(]

| 2 A. 2
g -op = a[rteian g [ipaas,
= 7 pos - Ae-pedt
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Cp = 7>\| (’“‘) ) PR {78)

~
For uniform flow, and v =1.0(no diffusion loss), a value of "‘}42. = V2
gives Cp = 0.75, a value which is in cxcellent agreement with Ackeret's
criterion.

I.,ieblein6 has shown that flow separation occurs on compressor blades when
the ratio ot the peak velocity to the trailing edge velocity exceeds 2. 0.

Other examples of this limitation on diffusion have been cited by Senoo7 who
points out that all conical diffuser data combine to show a peak pressure
recovery coefficient in the range 0.7 - 0.85, corresponding to velocity ratios

of about 0. 55 to 0.4. He also shows that, using numerical methods of determin-
ing the stability of a turbulent boundary layer, a uniform diffusion causes
separation at a velocity ratio of around 0. 6.

Finally, Goldschmied® has shown that stall can be correlated by the equation
Cp = @00 [ (79)

where 2: is the skin friction stress at the point of maximum velncity. Since
T, cannot exceed . 0048, Cp cannot exceed 0. 86 under the most favorable
conditions (R = 5000) and will be less for the higher Reynolds numbers en-
countered in most practical problems.

Thus,all the experimental evidence seems to point toward the essential correct-
ness of Equations (75) and (76), even though we cannot at present see clearly
why this should be so. There is obviously room for a great deal more research
in this regard.

So far as the present program is concerned, we are principally interested in
Equation (63), which can obviously be expressed as

H AP~ AR
%?3 - AARA . )(, A+.). (@0)
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Or, since AR (1- &) = £ €4 ,
D
AH ~ aa)®
gemr = (-Em). 1)

When dealing with a curvilinear flow field which has a velocity gradient across
the direction of flow, we shall assume that Equation (81) applies along individual
streamlines. This implies that, even in the middle of a jet, diffusion takes
place at constant static pressure (Figure 29 on an elemental scale) and this
assumption is impossible to justify, at the moment, other than by the results

of analysis based upon it.
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Taking only first-order differentials, this simplifies to
Fy = v AP 83
The mass per unit length of the element is
pr¢d, (84)

so that the centrifugal force is
proar . %

= . (85)
Since the centrifugal force must be balanced by the pressure force, we can
equate (83) and (85)
e ™S
e = e (86)
A -+
The local velocity is related to the total head at radius ¥+ by Bernoulli's
equation -~
* B = P B
eV = 2(P-4).
e S
Substituting for @V~ in Equation (86),
& +2p . 2P

where P,, can be any functionof -+ .

In order to solve this equation we need to specify one boundary condition;
usually the static pressure at the ¥, or K boundary. For exsmple,
specifying ambient static pressure at the Y boundary would give the an-
nular jet solution; specifying ambient pressure at the R boundary would
correspond to Coanda flow around a curved surface.
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It is convenient to use ""gauge' pressures (that is, pressures measured with
respect to some datum pressure, usually the ambient value), the definitions
being

A+ - ’P = Pa
AP = P - .. )

It follows that :_.‘.9"’ .~ ﬂ . Thus Equation (87) becomes

M + :;Ai"r .;;A ~> . (89)

e

A LINEAR TRANSFORMATION TO JET ORDINATES

Since the total pressure is specified with respect to the jet ordinate ( 3 in
Figure 37) it is convenient to transform Equation (89) to this variable. Such
a transformation also enables us to introduce the concept of a jet which has a
linear variation of curvature across its width, by writing

pre - A, + V3 (90)
where Vi = 1.0 for free vortex fiow.
7 = 0 for the constant radius assumption
used to derive "exponential theory".
In general, O<.7 < 1.0 for an annular jet, for example.

Note that %3 = 1,0 in Equation (89), despite the transformation. It now
becomes

A% .

(en

dp g _ 4 - _2 _
Sril FTT! h e 173

The general solution is the familiar formula for a first order linear equation:
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~ oty
ap, = [ aan ug k]

n,“,} (92)
Cow ef,ézz, . 2 . +931 ;
N O Y _’_‘75 \'7 /60’3 o »

—f'f—-._-—l-———_rzof 73 cj%/cﬁ"""c*qal

£. =

d:‘%f?
(t. + 13) ’ 193)

I\

sSuhetituting in (92)

My - <-=~'-.=+73}'%[2[2’a*“15>%"0‘? 4y ric)

} (99

the constant ¥ being zero if A’[’ = 0 when ’5 =0, of course. The total
siniic pressure rise across the jet 1s

bt = (% 4'9i'>% [zf(’ *‘7‘) 43 +%] .

NONLINEAR TRANSFORMATIONS

Slthough not gerinane to the problems of the present program, it is of
interest to note that nonlinear transformations of Fauation {(89) have value
in certain cases, one example being depicted in Figure 38.
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Figure 35. A Flow Whici, Has Infinite Radius of Curvature
at the Center Line.

Fnrv this case, for example, we might reasonably use the transformation

- - A'fo
‘ - _— 96
A-3 (96)
Thus Equation (39) becomes
e —3 o A
A3 A-3 3 R (97
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Chapter Four

INVISCID FLOW ANNULAR JET THEORY FOR CONSTANT TOTAL HEAD

In this chapter we shall apply the curvilinear jet theory first derived to the
annular jet problem. Of all the common curved jet flows this has been studied
most extensively, both theoretically and experimentally, and is therefore a
very logical starting point.

As noted in the introduction, most theoretical analyses to date have been based
on momentum equations. The well-known exception is Strand's!4 notential
flow solutiun, which is known {c give erroneous results at low ground clearance
heights.

When an cnnular jet is close to ground plane, it approaches, in the limit, the
case of a plenum chamber. The plenum chamber problem can be regarded as
equivalent to a jet issuing from a slot in the wall of a large vessel, the ground
plane replacing the axis of symmetry.

An extremely complete fﬁnﬂy of solutions for finite plenum chambers has
been obtained by Gabbay™ ~, as part of a more general investigation, and the
appropriate results are summarized in Figure 39. Since these results pass
through the already known points for © =+ 80°, 0° and - 90°, and since
these isolated cases are known to agree well with experiment, it is reason-
able to feel a high level of confidence in all Gabbay's results.

In passing, it is of interest tc note that the existence of these results now
enables us to work out definitive solutions to the problem of the optimum
wall angle for a plenum chambor GEM.

GENERAL MOME

A Thin Jet Solution (Pinnes' Geometry)

When "%Q & 1.0, we may postulate the geometry of Figure 40 for an annular
jet. The assumption of constant radius of curvature along any streamline
follows, of course, from the assumption of constant cushion and ambient
static pressure.

We refer all pressures to ambient by the ( A ) notation. Considering the
curved part of the jet (AABB), since the external pressure forces must be
equal to the change in momentum, we resolve horizontally and vertically.
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For the vertical resolution,

¢
A‘R l“(“‘me) -.cos8f & N& - J'.,c.ae;
4RI ] [ sy - Tce€
[Z,“ ag - MR- T o6

For the horizontal resolution,

4 - .
ApR(1 +an©) - -";‘e‘/d'ﬁvd3 'ﬁfﬁ"s = g"""e-té .

or, substituting from Equstion (98) for _/:ﬁv 0(3 R
(4

¢
ap.K ”_[41";“3 - :—I% : (99)

Considering now the momentum balance upon the accelerating flow section
(BBCC), the horizontal resolution gives

_2_;. - ja; + _[Z-f' 45 . (100)

Substituting for Aﬁd} in Equation (99)

M‘ . g.!-‘e‘ . (101)

It should be noted that no assumptions have had to be made for the form of the
static pressure distribution across the jet or for the total pressure variation.
Thus Equation (101) should hold for any theory.

The present analysis does not completely define the effective jet periphery <
of course, except in the two~dimensional flow case. However, 2 three-
dimensional momentum balance is easy to do for a given three=
dimensional planform, using the concepts introduced above.
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A Thick Jet Solution

As the jet nozzle approaches closer to the ground, we cannot expect the region
(BBCC) in Figure 40 to be physically separated from the curved jet flow. Rather,
as Strand has shown in his :legant potential flow solution, the acceleration to
ambient conditions will take place during the curved flow regime, and the jet
shape will resemble Figure 41.

Equation (98) is obviously still applicable to this case, so an expression de-

fining the nozzle pressure integral is available. For the horizontal resolution
we have

€
APR(1+ 50) - 5@9[“1‘%"‘3 = g—“"’@e r —é’;i—‘ - ao

¢
S bstituting Equation (98) for / 4443, we find that Equation (101) still applies.
(]

The Variation of Curvature Across a Thick Jet

The outer (cushion boundary) radius is always defined by

£ = R(1+s40) - A0 O (103)
on the assumption that the radius along any streamline is constant.
For the geometry of Figure 40

“w * R-~4 (104)

and the flow pattern is completely defined. Note however, that in previous
work the ( £8vn®) term in Equation (103) has been omitted.

For the thick-jet case of Figure 41, we must make an additional assumption;
to whit, that the ambient boundary streamline is tangential to the nozzle wall,
Then from Figure 41

R 8 gyt T * e’,*b’g)l"ue

or R(the) - »e(’?+ 5m0) 4 7 (1 +50), (105)

67



AP b0y

ows(y-go%))
" «tuufs\. ~
b 8
1




If + - T +73 , as discussed in the previous chapter,

R = = ~ vyt
and v = (R- +)&. (106)
But, from Equation (105),
1, = R. «(F-+s.0),
| 4 56
'%- + 3O
I + 3wO

7

. (107)

The ratiozﬁ,/k is a discharge coefficient, of course. As

%—-&O ,/hu/t——-—’o’7_..—-——-—’;~?.

The Height Parameter A /Q

We shall find that the fundamental parameter which defines the characteristics
of an annular jet is

' = ‘ [ ]
}ﬁ Radius of curvature of the outer streamline

From Equation (103) this is givea by

% s ,%'(l +r 3.0 )

|+ §sin0 ’ (108)

Previously, most writers have used the parameter

x = ’&_‘(' + 5.©) (109)



which is evidently erroneous, for ©>0, from the geometry of Figures
40 and 41.

Three-Dimnensional Effects

The principal geometric effect of three-dimensional flow is to modify the jet
curvature and hence the cushion pressure. From Figure 41 it is obvious that
the radius & will not be influenced, whatever the planform. When the jet is
curved in the third dimension. however, as in & circular planform GEM, for
example, its effective periphery increases as it moves away from the vehicle,
so that its thickness ( ,_ ) on the ground plane is accordingly reduced, leading
to an increase in the ambient side radius

It is important to realize that this effect applies only to annular jets which do
not have straight nozzles in planform. The jets of a rectangular GEM would
behave (on this postulation) exactly as if they were two-dimensional, the
"three-dimensional effects' being confined to their junctions at the corners.
There i8 some experimental evidencel? to indicate that, in such a case, the
interaction of two peripheral jets at a corner gives an increase in cushion
pressure rather than a loss.

As the most coamon example of a curved jet, the circular planform illus-
trated in Figure 12 i8 considered here.

Figure 43. Geometry of a Circular GEM.

The effective circumference C of the jet is given by evaluating the area of the
frustum of the right circular cone made by the jet exit.

e - 7[B+ Y -4enb][tsite k- - mnf J*
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ct - D4 [l - ‘%coggj

C = Wj)[l-"%cae}°

(110)
The jet radius on the cushion side is unaffected by the planform. The radius
detined by the ¥y arc becoming parallel to the ground is
d - D
< Y 4 (11— cx8)-

Thus the effective periphery is

Ce = ™[+ %"(‘““‘9)1‘ (112)

The analysis then proceeds as before. However, ‘t__ is now defined as

Aagy = e, X LT 3 e 13)

| + 2P §(1-c»0O)

or < . | — A eve® (114)
& "\... » .
i = {» l.-z.i(s—aso)

The limit case of a very thin jet is provided, of course, by assuming

In the most general case, the total head varistion across a jet is a function only
ofthedistanco(b ) across the jet.

A% - £¢3). (115)

n
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The local static pressure A‘f is also a function of 3 . It is therefore

possible to define completely general relationships for the various performance

parameters of interest, in terms of these two variables.

The Local Jet Velocity ‘\3

In the nozzle e)ut plane, the local velocity is ‘e
~3 - [ (47 — O,y ]
The Jet Mass Flow W )
dmj = € C 3 ol3
» C [2\’(0"5 - 84)1% 4

/cc(zc)“ j (apy - Mﬁ) (%) -

The Nozzle Momentum Flux J;)__

LT = eCyd3
T &
5 - L8Ry — a5 43

CA
Total Nossle Force Fy_

«f, = eCH 3 + COp4
- c[28R - 4] 4
<
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;Ji - [z"s‘(k) - _['A?s“i?é)-

A . '[(zalg - M43)4(3) .

(116)

(117,

(118)

(119)



Jet Power 8

v

Power is defined at the nozzle
A
pJ‘ = j V'AP R
-

dR - cCus. AR [#(8R-Ap)]*

i - [OR(R-IAFUOD.

Total Lift
Total lift = jet lift + cushion lift

- Fuces® + A Ap (121)
in inviscid flow.

SOLUTIGN OF THE CURVED JET EQUATION FOR CONSTANT TOTAL
PRESSURE

We come now to the colution of Equation (94) for the case
Afg = constant = AP (say).
This r;ives

-39 3 g—l
—2‘%" = 2(% *7%) ,[("0"73) 43 , (122)

the constant of integration vamishing because of the boundary condition 4@=o
at 3 =0. Integrating (133),we obtain

Lo - WY - (22 )‘6 (123)
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and, of course, the cushion prussure is

_%/‘;

Local Jet Veiocity —\s_

™3

M

(3¢ )"

Jet Mass Flow W 1

.c.;,-

< (‘t“})‘

. S
Ce(eMf) ~
.

The Nozzle

%
e

S
2k M}

Total Jet Force Fiv
Frv

- 0"

[3aRC - 201"

% \% |
(1;4-75) . ¢

p Ck3 vy

()
0 -(&'%m -5
[ -sm)4

. .[ ?7‘?'75 s

- —&s"["( *7)11‘] (!
- J, - c[%d;
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ZC’A,? A vl

ZcCaP

N Zr / 4 _In
=4 ECCA:Z}

irom the preceding section;

(g 2-
. /N _ _” r - s~ r = /V \.—;12) ? 71090\
— P = 2[ / + “o{u{:' {, ___(-"/ )l}j, (128}
e Jet Curvature Parameter 1
{
After the jet has accelerated to ambient, its thickness is ’{:& .
Thus, for contimuity
,”:\J. = e'ta. C -\,3.“/
ol Ao = ™y (129)

sible assumptions for calculating ’\Ea. . If total head is

5
~. = (BeR )

There Sre two pos
“onserved, then

from Kuguation (126).
[t total mementum is congerved, then '17]:1 is not necessarily constant across
The conservation of total momentum assumption only states that

t T
- = - 2%
N T VA e i
‘o the present analysis we will assume  “Fjq, = a constant, while noting
timiilations of this assumption. Thus, Equation (131) becomes

Lot
i N

(131)

=]
ot



2
Fu -et.C* ;

“k (’ f’<:'¢h. (132)

Substituting Equations (126) and (1<8)

Aa = 2(_""_4"_ [l —("@ﬂﬁ']

* | . Bk $3

e (133)
= o +"1

The jet thickness ratio’(;{e is also defined by the jet gometry. If we assume
that the inner and outer boundaries are circular arcs, then from Figure 41

‘1 « 6{ + ‘\-se (134

| 4 30n©

By cross-plotting Equation (134) with Equations (130) or (133), we can ohtain
solutions for 9 in terms of "G/& . This has been done in Figure 43, assum-
ing conservation of total head. The resulting values of ¥ and e ure
plotted in Figures 44 and 45. The agreement with Strand's potential flow
solution is notable in Figure 45.

Momentum Balance

From Equation (136), assuming coaservation of total head
To ~ ™k »

= (§4% )‘cc(erdﬁ)’-,%ﬁ-[ - Gy) )

(135)

From Equation (101)

Ta
a5 T BResCok ) -
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Determine Values for the Jet Curvature
Parameter 9 . (Solution for Conservation
of Total Head.)
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- = ’
s - EE)) (]

Compearing this with Equation ‘(117) we have

(Momentum Balance) _ ¢
(Curved Jet Theory) -

' e [ 4k | - (2 *.7)"

A S e 2/ 2
Yok ¥V
-Equation {138) is plotted in Figure 46. Although the momentum halance breaks
down as QL-» © , the new formulation is cbviously much more satisfactory
than previous theories. It should also be noted that the divergence from ¢ =1.(
as R —» 0 may not indicate a departure from balance, but only a departure
from the assumption of circular curvature.

(138

Other Results

Knowing the variation of v with % , we can calculate the values of the
other quantities derived earlier in this chapter.

In Figure 47 the cushion pressure parameter A‘ﬁ p; behaves just as we would
expect, ialling between the free-vortex and en{ial theory results.

The discharge ooefficient plotted in Figure 48 is particularly interesting, be-
cause, in onntrast to previous resuits, it obviously agrees well with the known
potential flow solutions for a plenum chamber. For the case € =0 on the
curve obviously fairs well into the point Gy = 0. 61 which is established for a
jet issuing from an orifice in a olane wall, while the @ = 80° curve would ob-
viously fair into the Borda mouthpiece solution of & =0.5.

It will be recalled that a major criticism of Strand's potential flow solution
was the limit Gy =» 0.5 as AR = 0 in contrast to the known result Cp = v.61.

A more detailed comparison of the discharge coefficient predicted by the

various theories is gtven in Figures 49 - 51, which also include an analogous
solution by GabbaylS,
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Gabbay's problem involves a straighi wall as the inner (cushion side) boundary
instead of a constant static pressure streamline. Since the static pressure
along his boundary is not necessarily constant. his result approximate; to the
annular jet case only in the limit ix/t => 0. But at large values of the jet angle
) the approximation will presumably he valid at finite small values of &/t .

We sce that, in gene:1l, the present theory agrees with Strand's for /% >1
and tends towe ~ds Gubbay's for 0.5 << ‘%éi 1 . At values of '2/4, < 0.5, the
solution breaks dovn hecause the implied geometrical assumptions are no
longer tenable; but ithe e:trapolution from higher values points quite convinc-
ity fowards Gabbay's limits for R4 = 0.

For wractical LrER s the range of interest ig 0.5 < %< 2 or 3. "lhe elegant
«nd sophisticatod pul 2 fal Cow freeemcts of Gahbar~and Strand apply respec-
tivery beiow axd above tiis rangre.  Within the range, this relatively simple
.neory f this repo™t is apparestliy mose applicable than either.

¥ should hasien to add tiat Gabbay wa.s net comsidering the annular jet prob-
s+moan bis analysis and aecver iateaded hss sclution to apply to it.

The nozzle force parameter plotted m 'Figure 32 i# noteworthy because the
pro csare Ht term s geaerally ignored in the calcwlation of total lift, yet is
zcen to make an importznt eontribution st low ground clearance heights.

Soni of the calculated two-dimenaional solutions arc given numerically in
Tabie 1,

The same procsdures apnly to the calculaion of fet churacteristics in the
three-dimenwional case, using Equation {(114).

A5 an exempie, we cilculate the values of ¥ and % for a circular plan-
torm GEM, forthe case @ =0 &p =0.1165. The resuliz are plotted in
Figures 53 and 54, and we ree that, although there is a gignilicant variation

in % ( and therefore €a/t), the cushiva pressurc remaiis almoot comypletely
uniflected by the change of planform.

Tl CUSHION PRESSURE PARAMETER Ab_

Ve shall see later chat the conveational cushion presscere paramsior
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&s - cushion pressure
A Pi mean jet total pressure

is not a very meaningful index of annular jet performance, nor is it a good
parameter for correlating test data.

The fundamental performance parameter in hover is the ratio of the totai lift
developed to the power lost in the jet, but this introduces extraneous variables
related to the planform and geometry of the veh.cle. A closely related index
is the ratio of the cushion pressure to the jet power, however, and this seems
to be the most useful parameter for general use.

From Equation (120) the general expression for jet power is seen to be

B - 2c@l[ar; (ap- 2455 e
Y. 5
. &C(g)"‘[ AR (1 - -2%) 6‘(‘%) (139
Since A‘f._ o< .[AF; *(k))

we may expect that

L
%— = constant,
[}

We can formalize this result by considering an ideal (very deep) plenum chainber
at an edge clearance height of A . The mass flow out is

l\.n.J - QCLCD“’}» - ¢eCoG (%Afg,)‘t; (140

> . W%,
p,' » 22V * C&C,(%) A‘f’e-&’ (141
Ao m(crc,)(gor)

The obvious non-dimensionalization is

A -
AF‘ - cl.(}df.) .;;_:’_‘ C)’ ) (142

92



.

g,

Ak can thus be calculated for any GEM configuration, provided that p,
and A, are known. Althoughdl is the reciprocal of Ty , this is an
effective discharge coefficient. In the general case, it will differ from the
actual discharge coefficient, which is defined as

C .y = I SO = ““’) . (143)
e Cve ac (2edp)*

Naturally, although we have derived this relationship from plenum chamber
theory, it can be applied to an annular jet. Indeed, at very low edge clearance
heights ( R, ~s 0),there is no difference between the two configurations. As
lift increases, the annular jet may be regarded as a special case of the plenum,
where dvcting is employed to reduce the discharge coefficient.

The General Expression for A“L'.-

From Equations (139) and (142),
%
A;c = "’,‘ - Sk =— . (14¢)
S AR (44- 44) <0¢)

Substituting for Of, and M\ from Equations (94) and (95),

_ ¥ raleem¥amult
Adp, = 8 (tok) M' 73) a8 ‘lll . (145)
ﬁq [om - <v.vys)".'{zj§. '»3"'5'3‘5“566)

An optimum total head distribution will be cae which maximizes this expression.
The Coastant Total Heed faluticn
if AR = aoonstant, it vanishes trom the expression, M\t
PR Yo ) (. der .
et Y <% [V -1 ]" )
J: C! - e+ 93T .{t‘[@,o”ﬁ 4}} 4@)




that is, A'Fc, = ‘% [. - ‘+,k)% ]%

}‘ ,/;&C.._:ﬂ )V’) 45

; ("’7)'%‘ |y —(-:Zﬁv[) ]
O - (2]

The Solution for Free-Vortex Flow ( '1 =1,0)

ot

For the case v =1.0,

A, <*-~3) 2,[(" *3)8Rdy.

Substituting in Equation (144),this reduces to

L. (22 + 1)
C% -H)’Xo,_‘\*'g,,“ '

A%
which can be written as

s, - Goeow)t
(""*/“V‘M T |

i - M (1= €%
Q ~e7)

8¢ _%

(146)

(147)

(148)

(149)

(150)

(151



GENERAL SOLUTIONS FOR FREE-VORTEX FLOW WITH CONSTANT TOTAL

PRESSURE

For the special case of free-vortex flow, the jet curvature parameter is

¥ =1.0. Thus,from Equation (84),

3
A4, . ~aYy .
_A,%; - (*e+3) . 2[(1‘. 3 DAy

-

Calculation of Mass Flow

-2
2(He+ s\.('d,s e }:/ Y.

From Equation (117),

.. t 2
™ - fl:n — 2@+3) (™3

AC (qa Ry

writing Q g

(]

< S
1+ 34,

we

L g\ 145 |

~ +t

y 144"

%
-0'*3“1)1 43

=&

" e Sl
cummmggmgmm_—\r‘

T

""“o

|-~
|=Ap +%

(152)

(153)

(154)

(155)

(156)

(167)

(188)



Note that as ¥R — 1.0, Yy — 0.

The Nozzle Moiientum Flux J]

Since T 2
AT = eCaa~, - eC 2af;
) ? 3 (i< “GY_( )
T

) = - ] AL
Bcebn |k L2 TR

\
v 72 e L & (15%)

The Total Jet Force F;l

From Equation (119),

I (R S
T > 3P,
.
- . .‘*2 «2* 2y *3;
{4=¢‘[¢ (:%:):( 3 ).,‘}

- 4t -'1":-.7'. - % -2% .

(160)
From Equations (117) sad (120)git is obvious that the jet power parameter is
the same as the mass flow parameter.

Momentum Balance
The momentum flux to ambient, assuming conservation of total head, is



- . 45 _ .
Ja = "V (%5'55‘-"&(3"5&)'L;%"“f}%"(ln)

Aﬁ (Momentum Thzory; . ¢ - 20-{-&),5,’ T:L'm ’ , (162}
A+, (Curved Jet Ticory) = e
w(2-%)

C LNERAL SOLIITIONS FOR CONSTANT RADIUS FLOW (EXPONFNTIAL
THEORY) WITH CONSTANT TOTAL PRESSURE

The exponential theory is concerned with the solution to Equation (94) when
‘7 = 0. We then have, from Equation (31),

My = RI0L2 Mg k]

= ejz% [%_fe%Adeq -Hc] .

(163)
e 3ee, [e™amdy -y ckeo;
-2 °
B A T
Wihen 4= 2 constant =A7. Equation (164) becomes
A "'_u "l)".
R Sl P
« \ - .'- (185)
and, of ocourse, the cushion pressu+e is
_ as;
é& - | - & '*.
Ap, (166



The Local Jet Velocity 1»3‘

% £
Since 1%; = (};'44?,) (, - i?%%?;) ’
«r] - e E
& aF)? ’
The Jet Mass Flow %
Since ‘dnj Y C"}

C(Zfdgji / “3

~ /- -
cecrparyr” 471: /ft’ .
The Nossle Momentum Fiux J/
= pCos. 2.4P¢
7. -m
2¢c¢ 4R *‘./
aﬁ
= /! - &
[ 3273
The Total Jet Foros fo_

Fue - J; + C_’/Z‘fz “<3
For
2"54715 * 2&4@ / 24 “3

(167)

(168}

(169)

(170)



The Jet Power y?

From Equation (120),

b7 = -+ / (s oL
31 - ) 3 .
ceaR( ;Ag’)
This expression is the same as for the mass flow, of course, so that
B : )

- - u_.[__._ = - l’

Momentum Balance

The momentum flux to ambient, assuming conservation of total head, is
[y “ ' * —‘*
L - mv. = (888)°ce(zer) (//;: ).

From Equation (101),

M = _L—-
. ALCR
= g~ ‘.,n) . (172)

Comparing this with Equation (166),

-9k
A (Momestum Theory) - e(i-
Afc (Curved Jet Theory) ¢ _(_:_:_:’_‘2‘ * (173)
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SOME EXPERIMENTAL RESULTS AT CONSTANT TOTAL PRESSURE

The Anmilar Jet Test Rig

The annular jet test rig shown in Figure 55 is based on a concept by Dr. Hervey
Chaplin of the David Taylor Model Basin. The novelty lies chiefly in the use of
an air supply at room ambient conditions aspirated through the test section to
artificially low "umbient" conditions created by a centrifugal blower.

This arrangement has the adantage that, since the supply air is initially stili,
the distribution of total pressure at the no; * °  very uniform and losses and
distortions arising from boundary layer effects aure minimized. The use of a
constant static pressure streamline intake assists in the creation of these de-
sirable flow characteristics.

The appearance of the rig, and of the nozzle geometry used for the present

series of measureinents, is shown in the photograph, Figure 55. The internal
dimensions and location of the measurement stations are shown in Figure 56.

The rig is practically two-dimensional, being contained between the sideboards
11.5 inches apart. All the measurements were made in the central plane and
quantities such as mass flow, volume flow, and power are referred to 2 unit width
(¢ =1 foot). Thus, flow volume appears as cubic feet per second per foot

and power as foot pounds per second per foot.

The Experiment

The principal expsrimental subject is, of course, the behavior of the air at
the nozsle exit. 1.0 air conditions prior to entering the nozzle were known
absolutely, being the ambient rvom conditions. The principal measurements
were at the outlet, where total and static pressures and the angle of flow were
obtained. A further series of messurements were made a little lower down-
stream, traversing the jet and deep irto the cushion to examine the behavior
of the cushion air mass.

Instrumentation

Toial and static pressures in the jet were sensed with a probe which detected
also the local direction of the flow. The sensing head of this type of probe is
wedge shaped, with the total pressure tap in the thin leading edge and a static
tap in each slant face. The observed static pressures equalize at the true
static when the wedge is pointing upstream, subject to a correction for error
in manufacture and for pitch angle of the flow. The probe was inserted through
the side of the rig,and the traverse was obtained by swinging the probe about
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Finure 56. Internal Dimensions of Annular Jet Test Rig.
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the point of penetration of the side wall. Thus, we obtained the angle of the
flow in the central plane, as well as the pressures, and were able to correct
for the pitch component due to the probe angle relative to the central plane by
using the calibration. (Actually, this correction was very small at all positions.)
Pressures were measured on inclined manometers. The readings were always
consistent and repeatable and are believed to be free from random error within
* 1 percent of the maxima, including transcription and computation errors. Sys-
tematic errors, if any, are unknown and are inherent in the method.

The pressure and velocity at the nozzle throat and outlet are shown in Figures
57 and 58. The experimental data are given in Table 2. These have been re-
duoed from manometer readings to pressures in inches of water and velocity in
feet per second. No smoothing has been applied, either by alteration or by
omission. Values for the flow volume and flow power were derived by numeri-
cal integration of these data.

Flow at the Throat (Figure 57)

The total pressure at the throat was virtually zero (relative to room ambient)
because of the negligibly cmall loss incurred by the flow in the entry. The
static pressure across the throat was nearly uniform with a rov:gh! !inear in-
crease outward from the cushion side. The mean velocity was . 35 feet per
second, and the volume flow was 9. 00 cubic feet per second per foot. This
value is probably slightly low because of the inability of the probe to penetrate
the very thin boundary layers and the consequent omission of some small part
of the flow from the integration. Similarly, the flow power, at 137 ioot-pounds
per foot, may also be low.

Flow at the Nozzle

At the nozzle outlet (Figure 58) the flow pattern is greatly changed. There is
a velocity gradient running from a sharp peak value at the nozzle lip down to
zero at a point 2. 25 inches nearer the cushion. The flow angle is, in the main,
normal to the traverse axis, indicating that the air has already turned through
the nozzle angle (30°) and more toward the lip. Numerical integration of this
velocity across the traverse gives a flow volume of 9. 06 cubic feet per second
per foot in the very fair agreement with the throat value,

The static pressure beyond the lip drops sharply to a depression of 2. 94 inches

of water. This is artificial "ambient" created by the inlet to the blower. The
pressure scale in the figure is referred to this datum, giving 2 cushion pressure
of +2,63 inches of water and a supply pressure of +2. 94 inches of water. The total

pressure loss across the jet is greatest at the cushion side and diminishes to
103



PRESSURE IN INCHES OF WATER
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Figurc 57. Velocity and Pressure Distribution in
the Throat of the Anmlar Jet.
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TABLE 2

EXPERIMENTAL DATA - ANNULAR JET TEST RIG

Locaticn Static Total Flow Velocity
Inches Pressure Pressure Angle Feet Per
Inward Inches Inches Degrees Second
From Lip Water Water

THROAT

0.15 2.19 2.94 - 57.6
0.25 2.17 2,94 - 58.5
0.35 2.18 2.4 - 58.0
0.45 2,18 2.94 - 58.0
0.55 2.20 2.9%4 - 57.3
0.65

0.75 2.20 2. 94 - 57.3
0.85

0.95 2.23 2.94 - 56.2
1.05

1.15 2.25 2. %4 - 55.4
1.25

1.35 2.26 2.94 - 55.0
1.45

1.55 2.28 2.94 - 54.2
1.685 2.28 2.94 - 54.2
1.75 2,29 2.94 - 53.8
1.85 2.31 2,94 - 53.0
1.95 2,32 2.94 - 52.5
NOZZL

0.14 0.000 0.079 - 16.5
0.08 0.000 0.070 - 16.5
0.02 0.040 0.070 - 9.5
0.04 0.000 2.768 +10 111.0
0.10 0.590 2.770 - 99.0
0.16 1.220 2,850 +3 85.0
0.29 1.640 2.886 +1.5 75.0
0.43 1.880 2,884 +1.5 67.0
0.54 2.023 2,885 +6 62.0
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0.66 2,150 2,877 +6 57.0
0.79 2,223 2,864 +6 53.5
0.91 2,310 2.855 +1.5 50.0
1.04 2,361 2.846 +1.5 46.5
1.16 2,425 2.824 -1 42.0
1.29 2.459 2.824 -1 40.5
1.43 2,490 2.792 -1 37.0
1.54 2,535 2,757 -1 31.5
1.66 2,544 2.7417 -6 30.0
1.79 2,570 2.7168 -11 25.5
1.91 2,580 2.69%4 -18 22,5
2.04 2,596 2.663 -19 17.0
2.16 2,598 2.636 -26 15.0
2.29 2,609 2.609 - 0.0
2.43 2,615 2.609 - -
2.54 2.631 2.631 - 0.0
NOZZLE EXIT AND CUSHION - LOW CUSHION ROARD
-0.41 0.00 0.10 90 21
-0.29 0.00 0.10 63 21
-0.16 0.09 2,21 48 7
-0.10 0.35 2.62 37 100.5
-0.04 0.70 2.62 30 92.5
+0. 08 1.165 2,82 25 86
0.21 1.48 2.84 23 7.7
0.33 2,745 2.85 20 70
0.46 1.925 2.82 12 63
0.58 2,080 2,829 15 56
0.71 2,178 z.827 12.5 54
0.83 2,275 2.816 12.5 49
0.96 2,332 2.798 12.5 46
1.08 2,399 2.7176 11 41
1.21 2,426 2,758 8 39
1.33 2,460 2.743 6.5 36
1.46 2,494 2.722 2.5 32
1.58 2.515 2.697 -2.5 28
1.71 2,529 2.695 -3 27
1.83 2,542 2.650 =5 22
1.96 2,550 2.639 -7.5 20
2,08 2.559 2,639 ~10 19
2.21 2,569 2.612 ~20 13.8

107



2.33
.46
2.58
2.n
2.83
2,9¢
3.08
3.21
3.33
3.46
3.58
3.7
3.83
3.96
4.08
4.21

NOZZLE EXIT AND CUSHION - HIGH CUSHION BOAR")

2.573
2.572
2.569
2.569
2.569
2.569
2,567
2.567
2.574
2,577

2,571

2.569
2,569
2.574
2.574
2.574
2,577

2.573

-22
=25

+90

-0.41
-0.29
-0.16
-0.10
-0.04
+0, 08
0.21
0.33

. .
W@ = A WS @ =1 v b
Q@ gﬂ&a- @ ®> o = a»ggca-u<m4a

NNH#H.-*»-:-‘&H.QQOOO
N O
d

0.00

0.00

0.17

0.30

0.63

1.20

1.545
1.870
2.075
2,207
2.320
2.408
2,495
2,538
2.604
2.604
2.6875
2.675
2.719
2.732
2.745
2.749
2.757

0. 30

0.28

1.25

2.833
2,825
2.833
3. 060
3. 026
3.0C8
3. 008
2.999
2. 968
2. 920
2,928
2.929
2.929
2. 860
2. 860
2.806
2.825
2.816
2.780
2.771

108

90
60
51
40
29
26
24
19
19
17
17
16.5
15
15
10

[y
1 ¥ 1Y oo

coww®
N

hd
o



2,746
2,757
2.762
2,758
2.758
2.789
2,789
2,789

2.789

2.751
2,727
2.762
2.71
2.776
2.789
2.789
2.789

2.789

150

[+ <]
et

29

24

24

109



very small values toward the outer edge.

The power loss between the throat ..d the nozzle is simply the integral of
P~rdae across the jet at the nozzle. This was computed as 5.49 foot-pounds
per foot, equal to 4.01 percent of the throat power. The total pressure loss
is plotted in Figure 59. The power distribution in the jet, like the velocity of
the flow, is weighted heavily away from the cushion. It is given by the product
of velocity and total pressure referred to the artificial ambient; thut is to say,
by the product of 8P and -V~ as they appear in Figure 58. This is also plotted
in Figure 59,

The static pressure variation across the jet at the nozzle outlet, as given in
Figure 58, is replotted in Figure 60 as the ratio e; ior comparison with
theory. In this display the unitized jet width is taken as 2-1/8 inches, this
being the greatest width at which a finite velocity was observed on the cushion
side.

From the comparison of Figure 60, it is evident that the present theory gives

a very fair approximation to the experimental observation. The theoiv appears
to predict (1) a higher pressure at the cushion side of the jet than was obtained
experimentally and (2) a lower pressure, implying a higher velocity, on the lip
side of the jet. This is entirely plausible as the result of viscous and diffusion
losses in the real case, not taken into account in the theories. Also, since the

measurements ave not across a truly normal plane, some distortion of the axis
must be preseat.

Flow Adjacent to the Annular Jet

In the attempt to determine the flow patterns beyond the boundaries of the jet
proper, we made an extended traverse reaching from outside the jet through
the jet and beyond for s distance of one jet thickness into the cushion. The
experiment was explorstory in concept. We wanted to get some measurements
in proximity to the jet boundary in the high-speed region around the nozzle lip,
to see if the secondary flow inside the cushion could be detected, and, as a
practical objective, to see if the variation in height of the cushion cavity would
influence the performance. Accordingly, the measurements were made, firstly,
with the cushion flush with the end of the nozzle, as in all the preceding experi-
ments, and secondly, with the cushion board high in relation to the nozzle as
featured in the illustration, Figure 55.

To clear the nozzle and low cushion board, the traverse sxis was slightly
lower than in the nozzie measurements of Figure §8. The answers to the
questions are evident in the plots of the measurements in Figures 61 and 62,
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As in the preceding measurements, the values here plotted are computed from
the new data without smoothing or selection.

The results show that there is a slight improvement in cushion pressure with
the large cavity. The blower was able to pull the outlet depression down to
3.12 inches of water, as against 2, 91 inches, with the small cavity (low cushion
board). The preceding test (Figure 58) gave slightly higher values: Af° =2,61,
AR =2. 94,%. = 0.892. This difference, when expressed in te>ms of posi-
tive supply pressure, appears as a higher supply pressure and higher cushion
pressure. This is presumably due to long-term supply voltage variations to
the rig motor rather than a change in the total rig loss coefficient. The cushion
pressure ratio for both tests (Ah )remains practically the same at

AP
A‘%/% - %—':-g- = 0.890  (large cavity)
A _ 2.58

=  0.887  (small cavity).

Thus, there is no difference between the two configurations, within the exper-
imental accuracy of the tests.

Some movement of air, downward in the la:ge ocavity and upward in proximity
to the jet, was detected. The velouvities were in the range of 0 - 10 feet per
second and were presumably evidenoe of & primary cushion vortex driven by

the jet. With the low cushion board, practioally no air movement was detected;
there were traces of flow at 8 feet per second or so toward the jet along the
underside of the cushion board but the reality of these is somewhat questionable,

In all other respects the traverses are almost identical and consistent with the
measurements closer to the jet (Figure 68). Tbhis consistency, incidentally,
increases confidence in the aocuracy of the instrumentation used in these ex-
periments.
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Chapter Five

THE EFFECT OF TOTAL PRESSURE VARIATION ACROSS AN ANNULAR JET

The general solution for an annular jet (Equation 94) contains the local jet total
pressure ( % ) as a variable of 3 So far, the equation has been solved only
for the case A ‘ = constant,

In a practical application AR is rarely constant, because of the losses incurred
upstream of the nozzle. Thus it is of interest to discover the effect of varying
AP; across the jet.

From a more academic point of view, there is no reason to suppose that con-
stant total pressure gives the maximum lift per unit jet power expended, and

it would be instructive to discover the true optimum distribution. In practical
cases where some adjustment of the AR distribution is possible (an annular

jet driven as an eductor, for example) it may then be possible to bias the distri-
bution in the direction of this theoretical optimum.

There is also another practical aspect. It is usual to reduce experimental
measurements of cushion preasure by dividing by the mean jet total pressure.
If this parameter is not independent of the total pressure distribution sha|

as we shall see that it is not -~ then this method of presenting results is unsat-
isfactory.

THE VELOCITY
In this section the annular jet equations will be solved for the special case of
an annular jet whose totai head distribution is such that the jet velocity is con-
stant across the duct.
Since
S
APy = Apy + pe~y (174)

Equation (174) can be substituted forAP in the basic equation of motion. From
Equation (97),the equation for curved now becomes

4 - b A
Zf + «';'%-'7"5 44 ¢.75(Aﬁ +40% ) (175)
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or

“p - PV

<3 % + 5;
5 2
A - £V . o (176)
+> o »,4—73 ‘3
= f‘fz}{. f-— 7 =0 177)
= ‘p—‘gi"l':l'-*'?%,l o pFO - )

Substituting in (174) for A ,

APJ - %f"s&(i "'?BA) A n-o (179)
- e (1 b et Ti ‘?%’D = 77° “s0)

The cushion pressure is obviously

3
M. = MK -° (181)

= '-3- Lo\l + 2| nyo - s2)
The jet power is
P - [ <

< (3;':))‘ / ca}; Ay . (133)
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Thus, by substituting (177) or (178) in (183), and by using equation (181) or (182)

for the cushion pressure, we can determine the parameter A-P\._ .

Determination of the Jet Curvature Parameter v
4

The nozzle mass flow is obviously

A = eCt—vf .

At ambient pressure, the local velocity will be given by

. 3, 3. .

(184)

% 2 .
- (Cg\jl‘(n + 75",”-7%04@{) . (185)

Combining (184) and (185) gives the integral relationship

o
o [Cegal i,

But, from Equation (107)

v ,%4—&'-.9.

| + 3 ©

These two equations enable us to determine 7 .

Calculation of &) for Free-Vortex Flow

For 7 = 1, 0 Equutions (180) and (183) give

?,. - C.’if"?t-jjl-f 21.,[0 -r%’)d}

(186)

- Gt.)g({ [-l + Zf(a *’%)”‘ﬂ'*’%'] . (187)
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Thus,from Equation (145),

3%
A - __[2/33_" + 54 l_ (188)

.‘_:__.’%.“Zogll—c—/t/v.' -k

/e

i

Since , = Q—k,

e T RA-1 ank Ay = AR

¢ — /R
AT - M- [2 4oy | V21 — aR) U%' (189)
fg'\ ‘Pc- ¢

Sl 1-r) — R
Calculation of A;:_ for Constant Radius Flow

For Y) = 0, Equations (179) and (183) give

<
% T c ‘&t"’s'_[('*ziﬂ)o(;

3
= C-vo.-é(‘\’:‘.é.(l-f/%). (190)

Thus, from Equation (145),

ya1 - (&%)
|+ A4

(191)

where ¥, =R in this case.

Discussion of Results

The total head variations necessary to give constant jei velocity are given in
Figure 63 expressed as the ratio 8% /AR This ratio uniquely defines 4
for the constant radius of curvature case, since the variation is linear across
the jet (Equation 179),but not the free-vortex solution.

Values of ‘&AR plotted in Figure 64 show a substantial difference between
the two curvature assumptions, but little difference in each case for constant
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jet velocity as against constant total head, except at very low values of R/e .
Figure 65 emphasizes this point, and it is interesting to note that, whereas con-
stant jet velocity increases the lift per unit power for constant radius theory, it
decreases it in free~vortex flow. Only the constant radius solution is significant
for B4 < 1.9, of course.

THE INFLUENCE OF THE TOTAL PRESSIJRE DISTRIBUTION ON CUSHION
PRESSURE IN TERMS OF MEAN TOTAL PRESSURE, FOR FREE-VORTEX
FLOW

It is normal to express cushion pressure as the ratio A‘ﬁ./AP For example,
exponential theory gives

A - 2%
—— i

AR
for a constant total head in the jet.
We have seen that in reducing experimental data, when AP is not constant
across the jet, it is usual to find the mean value AR, and hence the ratio
O /AR, . 1t will he shown below that this is acceptable when the total pressure
profile is symmetrical about the midpoint, but not when the distribution is
skewed, for the case of free-vortex flow.

For the case ¥ =1, Equmon (95) gives the cushion pressure as
I / (%73)4P, 43
- 26e) [4g‘ﬁP A3 + g ’APe(;J
ma s, Ap - 200) [ [ ak 43¢) */(n»)AP d(%)], (192)

Thus the determination of the cushion pressure depends upon the evaluation
of the two integrals

-./A"f“(%) - 45 (the mean total pressure)
.,/ (,%)A,}" (%) (a weighted mean),

(193)
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Equation (192) can be rewritten as

A oot f L3 45400
Ak - 20k)- 2R 2% om0

If a shape integral is defined as

P ./,/,}/e AR «(¥)

(194)

- —é— , (195)
/ 8Py 4(%)
Equation (194) becomes
4 - - >
Z%: = [2R-G&)] +2¢R)x (196)
={value for a constant + (increment due
total pressure distribution) to the shape factor)

In the case of profiles which are symmetric about 3 = A¢, it can be shown
that A =0 elways. This is proved as follows:

; 4 '
JoRaw) - [o)a5«) r_-/(k)‘@'fas)
M/é‘}"\[/’, }./"fl ‘/‘?{*"’ ’
S hete) = - [a-yt)ah, <)
4 4
£
. [4&*/%) - /(fmae«%);
: 4
v 0008t - [agaw)
A > /‘A&““‘?’ - é : O,
f./’% < ()
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